2的自然對數

2的自然對數

ln2(OEIS數列A002162)約為:

2的自然對數2的自然對數

數表—無理數

2

{\displaystyle \color {blue}{\sqrt {2}}}

-

φ

{\displaystyle \color {blue}\varphi }

-

3

{\displaystyle \color {blue}{\sqrt {3}}}

-

5

{\displaystyle \color {blue}{\sqrt {5}}}

-

δ

S

{\displaystyle \color {blue}\delta _{S}}

-

e

{\displaystyle \color {blue}e}

-

π

{\displaystyle \color {blue}\pi }

識別種類無理數符號

ln

2

{\displaystyle \ln {2}}

性質連分數[0; 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, 1, 3, 10] (OEIS數列A016730)

0

+

1

1

+

1

2

+

1

3

+

1

1

+

1

6

+

{\displaystyle 0+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{3+{\cfrac {1}{1+{\cfrac {1}{6+\ddots }}}}}}}}}}}

以此為根的多項式或函數

e

x

2

=

0

{\displaystyle e^{x}-2=0}

[1]表示方式值

ln

2

{\displaystyle \ln {2}\approx }

0.693147180...二進制0.101100010111001000010111…十進制0.693147180559945309417232…十六進制0.B17217F7D1CF79ABC9E3B398…

ln

2

0.693147

{\displaystyle \ln 2\approx 0.693147}

使用對數公式

log

b

2

=

ln

2

ln

b

.

{\displaystyle \log _{b}2={\frac {\ln 2}{\ln b}}.}

可以求出log2,它約為:(OEIS數列A007524)

log

10

2

0.301029995663981195

{\displaystyle \log _{10}2\approx 0.301029995663981195}

數學家理察·施羅培爾(英語:Richard Schroeppel)在1972年證明,不尋常數的自然密度等於

ln

2

{\displaystyle \ln 2}

。換言之,若

u

(

n

)

{\displaystyle u(n)}

表示不大於

n

{\displaystyle n}

的自然數之中,有多少個數

a

{\displaystyle a}

具有大於

a

{\displaystyle {\sqrt {a}}}

的質因數,則有:

lim

n

u

(

n

)

n

=

ln

(

2

)

=

0.693147

.

{\displaystyle \lim _{n\rightarrow \infty }{\frac {u(n)}{n}}=\ln(2)=0.693147\dots \,.}

目次

1 公式

2 積分公式

3 其他公式

4 其他對數

4.1 範例

5 10的自然對數

6 參考文獻

7 外部連結

8 參見

公式

編輯

n

=

1

(

1

)

n

+

1

n

=

n

=

0

1

(

2

n

+

1

)

(

2

n

+

2

)

=

ln

2.

{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}=\sum _{n=0}^{\infty }{\frac {1}{(2n+1)(2n+2)}}=\ln 2.}

n

=

0

(

1

)

n

(

n

+

1

)

(

n

+

2

)

=

2

ln

2

1.

{\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(n+1)(n+2)}}=2\ln 2-1.}

n

=

1

1

n

(

4

n

2

1

)

=

2

ln

2

1.

{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(4n^{2}-1)}}=2\ln 2-1.}

n

=

1

(

1

)

n

n

(

4

n

2

1

)

=

ln

2

1.

{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n(4n^{2}-1)}}=\ln 2-1.}

n

=

1

(

1

)

n

n

(

9

n

2

1

)

=

2

ln

2

3

2

.

{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n(9n^{2}-1)}}=2\ln 2-{\frac {3}{2}}.}

n

=

2

1

2

n

[

ζ

(

n

)

1

]

=

ln

2

1

2

.

{\displaystyle \sum _{n=2}^{\infty }{\frac {1}{2^{n}}}[\zeta (n)-1]=\ln 2-{\frac {1}{2}}.}

n

=

1

1

2

n

+

1

[

ζ

(

n

)

1

]

=

1

γ

1

2

ln

2.

{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2n+1}}[\zeta (n)-1]=1-\gamma -{\frac {1}{2}}\ln 2.}

n

=

1

1

2

2

n

(

2

n

+

1

)

ζ

(

2

n

)

=

1

2

(

1

ln

2

)

.

{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{2n}(2n+1)}}\zeta (2n)={\frac {1}{2}}(1-\ln 2).}

γ

{\displaystyle \gamma }

是歐拉-馬歇羅尼常數,

ζ

{\displaystyle \zeta }

是黎曼ζ函數。

ln

2

=

k

1

1

k

2

k

.

{\displaystyle \ln 2=\sum _{k\geq 1}{\frac {1}{k2^{k}}}.}

[2]:31

ln

2

=

k

1

(

1

3

k

+

1

4

k

)

1

k

.

{\displaystyle \ln 2=\sum _{k\geq 1}\left({\frac {1}{3^{k}}}+{\frac {1}{4^{k}}}\right){\frac {1}{k}}.}

ln

2

=

2

3

+

k

1

(

1

2

k

+

1

4

k

+

1

+

1

8

k

+

4

+

1

16

k

+

12

)

1

16

k

.

{\displaystyle \ln 2={\frac {2}{3}}+\sum _{k\geq 1}\left({\frac {1}{2k}}+{\frac {1}{4k+1}}+{\frac {1}{8k+4}}+{\frac {1}{16k+12}}\right){\frac {1}{16^{k}}}.}

(貝利-波爾溫-普勞夫公式)

ln

2

=

2

3

k

0

1

(

2

k

+

1

)

9

k

.

{\displaystyle \ln 2={\frac {2}{3}}\sum _{k\geq 0}{\frac {1}{(2k+1)9^{k}}}.}

(基於反雙曲函數,可參見計算自然對數的級數。)

積分公式

編輯

0

1

d

x

1

+

x

=

ln

2

{\displaystyle \int _{0}^{1}{\frac {dx}{1+x}}=\ln 2}

1

d

x

(

1

+

x

2

)

(

1

+

x

)

2

=

1

4

(

1

ln

2

)

{\displaystyle \int _{1}^{\infty }{\frac {dx}{(1+x^{2})(1+x)^{2}}}={\frac {1}{4}}(1-\ln 2)}

0

d

x

1

+

e

n

x

=

1

n

ln

2

;

0

d

x

3

+

e

n

x

=

2

3

n

ln

2

{\displaystyle \int _{0}^{\infty }{\frac {dx}{1+e^{nx}}}={\frac {1}{n}}\ln 2;\int _{0}^{\infty }{\frac {dx}{3+e^{nx}}}={\frac {2}{3n}}\ln 2}

0

(

1

e

x

1

2

e

2

x

1

)

=

ln

2

{\displaystyle \int _{0}^{\infty }\left({\frac {1}{e^{x}-1}}-{\frac {2}{e^{2x}-1}}\right)=\ln 2}

0

e

x

1

e

x

x

d

x

=

ln

2

{\displaystyle \int _{0}^{\infty }e^{-x}{\frac {1-e^{-x}}{x}}dx=\ln 2}

0

1

ln

x

2

1

x

ln

x

d

x

=

1

+

ln

2

+

γ

{\displaystyle \int _{0}^{1}\ln {\frac {x^{2}-1}{x\ln x}}dx=-1+\ln 2+\gamma }

0

π

3

tan

x

d

x

=

2

0

π

4

tan

x

d

x

=

ln

2

{\displaystyle \int _{0}^{\frac {\pi }{3}}\tan xdx=2\int _{0}^{\frac {\pi }{4}}\tan xdx=\ln 2}

π

4

π

4

ln

(

sin

x

+

cos

x

)

d

x

=

π

4

ln

2

{\displaystyle \int _{-{\frac {\pi }{4}}}^{\frac {\pi }{4}}\ln(\sin x+\cos x)dx=-{\frac {\pi }{4}}\ln 2}

0

1

x

2

ln

(

1

+

x

)

d

x

=

2

3

ln

2

5

18

{\displaystyle \int _{0}^{1}x^{2}\ln(1+x)dx={\frac {2}{3}}\ln 2-{\frac {5}{18}}}

0

1

x

ln

(

1

+

x

)

ln

(

1

x

)

d

x

=

1

4

ln

2

{\displaystyle \int _{0}^{1}x\ln(1+x)\ln(1-x)dx={\frac {1}{4}}-\ln 2}

0

1

x

3

ln

(

1

+

x

)

ln

(

1

x

)

d

x

=

13

96

2

3

ln

2

{\displaystyle \int _{0}^{1}x^{3}\ln(1+x)\ln(1-x)dx={\frac {13}{96}}-{\frac {2}{3}}\ln 2}

0

1

ln

x

(

1

+

x

)

2

d

x

=

ln

2

{\displaystyle \int _{0}^{1}{\frac {\ln x}{(1+x)^{2}}}dx=-\ln 2}

0

1

ln

(

1

+

x

)

x

x

2

d

x

=

1

2

ln

2

{\displaystyle \int _{0}^{1}{\frac {\ln(1+x)-x}{x^{2}}}dx=1-2\ln 2}

0

1

d

x

x

(

1

ln

x

)

(

1

2

ln

x

)

=

ln

2

{\displaystyle \int _{0}^{1}{\frac {dx}{x(1-\ln x)(1-2\ln x)}}=\ln 2}

1

ln

ln

x

x

3

d

x

=

1

2

(

γ

+

ln

2

)

{\displaystyle \int _{1}^{\infty }{\frac {\ln \ln x}{x^{3}}}dx=-{\frac {1}{2}}(\gamma +\ln 2)}

γ

{\displaystyle \gamma }

是歐拉-馬歇羅尼常數。

其他公式

編輯

用皮爾斯展開式(A091846)表達ln2:

log

2

=

1

1

1

1

3

+

1

1

3

12

{\displaystyle \log 2={\frac {1}{1}}-{\frac {1}{1\cdot 3}}+{\frac {1}{1\cdot 3\cdot 12}}-\ldots }

.

用恩格爾展開式A059180表達ln2:

log

2

=

1

2

+

1

2

3

+

1

2

3

7

+

1

2

3

7

9

+

{\displaystyle \log 2={\frac {1}{2}}+{\frac {1}{2\cdot 3}}+{\frac {1}{2\cdot 3\cdot 7}}+{\frac {1}{2\cdot 3\cdot 7\cdot 9}}+\ldots }

.

用餘切展開式A081785表達ln2:

log

2

=

cot

(

arccot

0

arccot

1

+

arccot

5

arccot

55

+

arccot

14187

)

{\displaystyle \log 2=\cot(\operatorname {arccot} 0-\operatorname {arccot} 1+\operatorname {arccot} 5-\operatorname {arccot} 55+\operatorname {arccot} 14187-\ldots )}

.

其他對數

編輯

範例

編輯

此章節尚無任何內容,需要擴充。 (2020年4月30日)

10的自然對數

編輯

此章節尚無任何內容,需要擴充。 (2020年4月30日)

參考文獻

編輯

^ Wolfram, Stephen. "e^x-2=0". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英語).

^ Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. §2.2 Integer Relation Detection. Experimental Mathematics in Action. A K Peters/CRC Press. 2007: pp. 29-31. ISBN 978-1568812717. 引文格式1維護:冗餘文本 (link)

Brent, Richard P. Fast multiple-precision evaluation of elementary functions. J. ACM. 1976, 23 (2): 242–251. doi:10.1145/321941.321944. MR0395314.

Uhler, Horace S. Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17. Proc. Nat. Acac. Sci. U. S. A. 1940, 26: 205–212. MR0001523.

Sweeney, Dura W. On the computation of Euler's constant. Mathematics of Computation. 1963, 17. MR0160308.

Chamberland, Marc. Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne primes (PDF). Journal of Integer Sequences. 2003, 6: 03.3.7 [2011-01-08]. MR2046407. (原始內容 (PDF)存檔於2011-06-06).

Gourévitch, Boris; Guillera Goyanes, Jesus. Construction of binomial sums for π and polylogarithmic constants inspired by BBP formulas (PDF). Applied Math. E-Notes. 2007, 7: 237–246 [2011-01-08]. MR2346048. (原始內容存檔 (PDF)於2020-02-06).

Wu, Qiang. On the linear independence measure of logarithms of rational numbers. Mathematics of Computation. 2003, 72 (242): 901–911. doi:10.1090/S0025-5718-02-01442-4.

外部連結

編輯

埃里克·韋斯坦因. Natural logarithm of 2. MathWorld.

table of natural logarithms. PlanetMath.

Gourdon, Xavier; Sebah, Pascal. The logarithm constant:log 2. [2011-01-08]. (原始內容存檔於2020-02-23).

參見

編輯

對數

自然對數

常用對數

超越數

📚 相关推荐

武汉真空KTV哪家陪唱好玩
怎么拉两个人的微信群聊?如何新建2人微信群?
范·巴斯滕巅峰时期究竟有多强
CF穿越火线瞬狙教程 瞬狙技巧和优劣势分析
LOL美服怎么玩——新手指南与注册下载全攻略
形容学霸的四字词语大全(形容学霸厉害的成语)(31个)